Chapter 03 The Biosphere

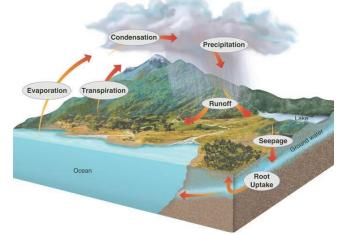
3.1 What is Ecology?

- Studying Our Living Planet
 - o <u>Biosphere</u> = All life on Earth and all parts of the Earth in which life exists. Includes all land, all water, and the atmosphere
 - o The Science of Ecology
 - <u>Ecology</u> = The study of the interactions between organisms and their surroundings
 - <u>Key</u> = Ecology is the scientific study of interactions among organisms and between organisms and their physical environment
 - o Ecology and Economics
 - Both ecology and economics have the same root word which makes the interactions between each other and surroundings in the transfer of nutrients between individuals
 - o Levels of Organization
 - <u>Individual</u> = One member of a type of living thing
 - Species = A group of similar organisms that can breed and produce offspring
 - Population = A group of individuals of the same species that live in the same area
 - Community = Assembly of populations that live together in a defined area
 - Ecosystem = All the organisms that live in a place as well as their physical environment
 - Biome = Group of ecosystems that share similar climates and typical organisms
 - All the biomes, with all organisms, and all environments make up the biosphere
- Biotic and Abiotic Factors
 - Biotic Factors
 - Key = The biological influences on organisms are called biotic factors
 - Biotic Factor = Any living part of the environment with which an organism may interact
 - Animals, plants, mushrooms, bacteria, etc...
 - Abiotic Factors
 - <u>Kev</u> = Physical components of an environment are called abiotic factors
 - <u>Abiotic Factor</u> = Any nonliving part of the environment
 - Sunlight, heat, precipitation, humidity, wind, water, soil, etc...
 - Biotic and Abiotic Factors Together
 - Both biotic and abiotic factors tend to intermix with one another and it can be difficult to determine if something is just one of the two
 - Muck in a pond contains leafs, mold, and other plant material that serves as food for bacteria, fungi, and many biotic factors that live within it
 - The trees and plants of a forest will affect the humidity of the air within the forest, the amount of oxygen and carbon dioxide, and many other abiotic factors
- Ecological Methods
 - Key = Regardless of their tools, modern ecologists use three methods in their work, each of these approaches relies on scientific methodology to guide inquiry
 - Observation Asking questions and using senses for data
 - Experimentation Making and testing hypotheses
 - Modeling Creating mathematical or visual representations of data

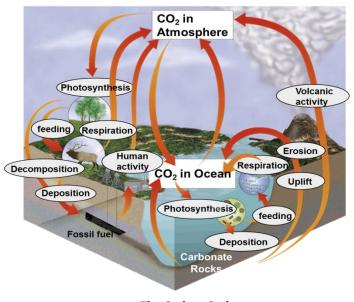
3.2 Energy, Producers, and Consumers

- Primary Producers
 - <u>Autotrophs</u> = Use solar or chemical energy to produce food by assembling inorganic compounds into complex organic molecules
 - Key = Primary Producers = Autotrophs are also called primary producers because they are the first producers of energy-rich compounds that are later used by other organisms
 - o Energy From the Sun
 - <u>Photosynthesis</u> = The capturing of light energy and using it to power chemical reactions that convert carbon dioxide and water into oxygen and energy-rich carbohydrates

- o Life Without Light
 - <u>Chemosynthesis</u> = The capturing of chemical energy from inorganic molecules such as hydrogen sulfide to produce carbohydrates
- Consumers
- Heterotrophs = Organisms that must obtain their energy from other organisms
- <u>Key</u> = <u>Consumers</u> = Heterotrophs are also called consumers because they must get their energy and nutrients from consuming other organisms
- o Types of Consumers
 - Carnivores = Kill and eat other animals
 - Snakes, dogs, cats, otters, etc...
 - <u>Herbivores</u> = Eat plant leaves, roots, seeds, or fruits
 - Cows, caterpillars, deer, macaws, etc...
 - <u>Scavengers</u> = Consume carcasses of other animals that have already died
 - Vultures
 - Omnivores = Eat both plants and animals
 - Humans, bears, pigs, coati, etc...
 - <u>Decomposers</u> = Chemically break down organic matter
 - Bacterium, fungi, mushrooms, etc...
 - They produce "detritus", which are small pieces of dead and decaying remains
 - <u>Detritivores</u> = Consume detritus particles
 - Mites, snails, shrimp, crabs, etc...
 - Will digest decomposers and detritus that decomposers tend to live in
- o Beyond Consumer Categories
 - Having categories is a good place to start, but organisms in nature often do not stay inside
 of tidy little categories if they need to.
 - Hyenas will scavenge if they have a chance to
 - Aquatic animals will eat a mixture of algae, bits of carcasses, and detritus particles, technically making them fit into 3 different categories


3.3 Energy Flow in Ecosystems

- Food Chains and Food Webs
 - Key = Energy flows through an ecosystem in a one-way stream, from primary producers to various consumers
 - Food Chains
 - Food Chain = Series of steps in which organisms transfer energy by eating & being eaten
 - Phytoplankton = A mixture of floating algae that are the producers in aquatic systems
 - Food Webs
 - Food Web = A more realistic look at the energy flow of an ecosystem as the feeding relationships are not linear and therefore create a type of web relationship between organisms
 - Food Chains Within Food Webs
 - Each individual path taken through a food web is a food chain
 - Decomposers and Detritivores in Food Webs
 - Decomposers are the recyclers of a food web because they convert the dead
 plant and animal material into detritus, which is then the beginning of many of
 the food chains within a food web
 - o Food Webs and Disturbance
 - Zooplankton = Small animals that swim and eat marine algae
- Trophic Levels and Ecological Pyramids
 - <u>Trophic Level</u> = Each step in a food chain or food web
 - Ecological Pyramids = 3 pyramids showing relative amounts of things in food chain/web

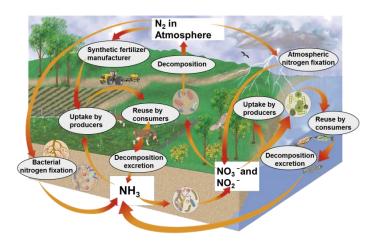

- Pyramids of Energy
 - **Key** = Pyramids of energy show the relative amount of energy available at each trophic level of a food chain or food web.
- o Pyramids of Biomass and Numbers
 - <u>Biomass</u> = The total amount of living tissue within a trophic level
 - <u>Key</u> = Pyramids of biomass show the relative amount of living organic matter available at each trophic level in an ecosystem
 - <u>Key</u> = Pyramids of numbers show the relative number of individual organisms at each trophic level in an ecosystem
 - Sometimes consumers are much smaller than the organisms they feed upon, so the pyramid of numbers can be turned upside down due to size of the organisms

3.4 Cycles of Matter

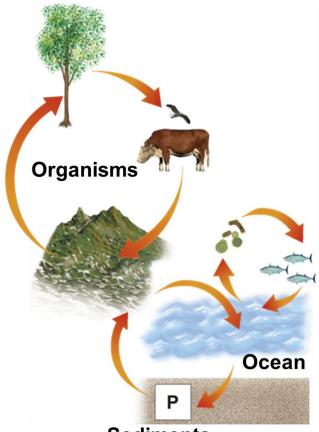
- Recycling in the Biosphere
 - <u>Key</u> = Unlike the one-way flow of energy, matter is recycled within/between ecosystems
 - Biogeochemical Cycles = Closed loops in which elements pass from one organism to another and among parts of the biosphere.
 - Biological Processes any processes done by living organisms
 - Geological Processes any processes done by the earth
 - Chemical and Physical Processes – any chemical or physical processes
 - Human Activity humans move elements through all of their activities
- The Water Cycle
 - Key = Water continuously moves between the oceans, the atmosphere, and land – sometimes outside living organisms and sometimes within them
- Nutrient Cycles
 - <u>Nutrients</u> = chemical substances that an organism needs to sustain life
 - Key = Every organism needs nutrients to build tissues and carry out life functions. Like water, nutrients pass through organisms and the environment through biogeochemical cycles.

The Water Cycle

The Carbon Cycle


The three pathways, or cycles that move carbon, nitrogen, and phosphorous through the biosphere are especially critical for life

- The Carbon Cycle
 - Carbon moves through the ecosystem in many ways


- o The Nitrogen Cycle
 - <u>Nitrogen Fixation</u> = process of nitrogen from the atmosphere being converted into nitrogen containing compounds by certain bacteria
 - Denitrification = process of nitrogen being released into the atmosphere from nitrogen containing compounds by certain bacteria
- The Phosphorous Cycle
 - Phosphorous is an important chemical for life as it is used in DNA and RNA. It is mostly stored in phosphates

- Key = If ample sunlight and water are available, the primary productivity of an ecosystem may be limited by the availability of nutrients
- <u>Limiting Nutrient</u> = Nutrient whose supply limits the productivity of life
- Nutrient Limitation in Soil
 - Fertilizer adds nutrients to the soil to keep growing crops well
- Nutrient Limitation in Aquatic Ecosystems
 - Open oceans are nutrient-poor when compared to most land
 - Usually after a rainstorm bodies of water will get a huge supply of limiting nutrient from the runoff of water carrying those nutrients from the land into the ocean

Nitrogen Cycle

Sediments

Phosphorous Cycle