Chapter 12 WS

Mass \& Volume to Mass Conversions

Name: \qquad
Period: \qquad Date: \qquad

Solve. Show ALL work and use correct significant figures and units in all of your steps.

1) For the reaction $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$, how many grams of potassium chloride can be produced from 150 g of potassium bromide?
2) For the reaction $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$, how many grams of hydrogen are produced if 40 g of water are available?
3) For the reaction $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$, how many grams of sodium chloride can be produced from 250 g of chlorine gas?
4) For the reaction $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$, how many grams of sulfuric acid can be produced from 100 g of sulfur trioxide?
5) For the reaction $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$, how many grams of zinc oxide can be produced from 50 g of zinc?
6) Chlorine is produced by the reaction $2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. How many grams of hydrochloric acid must be used to produce 7.5 L of chlorine gas?
7) Iron (III) oxide is produced by the reaction $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$. How many grams of iron (III) oxide can be produced from 12.5 L of O_{2} ?
8) When carbon burns, carbon dioxide is produced in the reaction: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$. If 5 liters of carbon dioxide are produced, how many grams of carbon were used?
9) The combustion of ethane follows this reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$. If 156.8 liters of oxygen are used, what mass of ethane was burned?
10) Photosynthesis takes carbon dioxide and water and converts it into glucose and oxygen: $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}$. If a plant takes in 12.5 liters of carbon dioxide, what mass of glucose can the plant produce?
