Chapter 16 WS

Intro to Thermodynamics \& Specific Heat
\qquad
Period: \qquad Date: \qquad

1) In an exothermic reaction, is heat gained or lost in the system? Is heat gained or lost in the surroundings? Draw a diagram that shows the transfer of energy between the two in an exothermic reaction.
2) In an endothermic reaction, is heat gained or lost in the system? Is heat gained or lost in the surroundings? Draw a diagram that shows the transfer of energy between the two in an endothermic reaction.
3) $\Delta \mathrm{H}$ is known as the \qquad or the \qquad If a reaction is exothermic, the value of $\Delta \mathrm{H}$ will be \qquad , but if a reaction is endothermic, the value of $\Delta \mathrm{H}$ will be \qquad .
4) List three examples of an exothermic reaction
5) When you get a small cut, you can disinfect it by placing hydrogen peroxide in the wound. How much energy will be transferred if 34.0 g of hydrogen peroxide decomposes by the following reaction? Is it endothermic or exothermic?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}+200 \mathrm{~kJ}
$$

7) How much heat will be transferred when 5.494 g of manganese reacts with hydrochloric acid according the following equation? Is it endothermic or exothermic?

$$
\mathrm{Mn}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{MnCl}_{2(a q)}+\mathrm{H}_{2(\mathrm{~g})}+221 \mathrm{~kJ}
$$

5) List three examples of an endothermic reaction
6) How much heat will be transferred in the decomposition of 10.8 g of dinitrogen pentoxide? Is it endothermic or exothermic?

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})}+110 . \mathrm{kJ} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

9) Phosphorus burns to produce a thick white cloud of tetra phosphorus decaoxide gas. This gas reacts with water in the air to produce acid rain composed of phosphoric acid. How much energy is transferred when 14.2 g of the gas reacts with water? It is endothermic or exothermic?

$$
\mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4(a q)}+424 \mathrm{~kJ}
$$

10) Methane gas is used as a fuel for heating hot water in many of our homes. It is also used to cook our food in our gas stoves as well as in our Bunsen Burners in our chemistry lab. Write the thermochemical equation with $\Delta \mathrm{H}$, for the combustion of methane gas if it is an exothermic reaction that produces $890 \mathrm{~kJ} / \mathrm{mol}$ of CH_{4}.

Solve each of the following story problems involving specific heats

11) 5.0 g of copper was heated from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. How much energy in calories and joules was used to heat Cu ? (Specific heat capacity of Cu is $0.092 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$)
12) How much heat in calories and joules is absorbed by 20 g granite boulder as energy from the sun causes its temperature to change from $10^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}$? (Specific heat capacity of granite is $0.10 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
13) How much heat is released in calories and joules when $30 . \mathrm{g}$ of water at $96^{\circ} \mathrm{C}$ cools to $25^{\circ} \mathrm{C}$? The specific heat of water is $1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
14) If a 3.1 g ring is heated using 10.0 calories, its temperature rises $17.9^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the ring.
15) The temperature of a sample of water increases from $20.0^{\circ} \mathrm{C}$ to $46.6^{\circ} \mathrm{C}$ as it absorbs 5650 calories of heat. What is the mass of the sample? (Specific heat of water is $1.0 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$)
16) The temperature of a sample of iron with a mass of 10.0 g changed from $50.4^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$ with the release of 47 calories of heat. What is the specific heat of iron in calories and joules?
17) A 4.50 g coin of copper absorbed 54 calories of heat. What was the final temperature of the copper if the initial temperature was $25^{\circ} \mathrm{C}$? The specific heat of copper is $0.092 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
18) A 155 g sample of an unknown substance was heated from $25.0^{\circ} \mathrm{C}$ to $40.0^{\circ} \mathrm{C}$. In the process, the substance absorbed 569 calories of energy. What is the specific heat of the substance in calories and joules?
19) What is the specific heat in calories and joules of an unknown substance if a 2.50 g sample releases 12 calories as its temperature changes from $25 .{ }^{\circ} \mathrm{C}$ to $20 .{ }^{\circ} \mathrm{C}$?
20) You find a rod that looks like platinum laying on the ground and want to test to see if it is. If it requires 2170 J of energy to change the 221 g rod from $43^{\circ} \mathrm{C}$ to $121^{\circ} \mathrm{C}$, is the rod made of platinum $\left(\mathrm{C}_{\mathrm{Pt}}=0.126 \mathrm{~J} / \mathrm{g}^{\circ}\right)$?
