Chapter 18 WS

$\mathbf{K}_{\text {sp }}$, Gibbs, Order of Reactions

Name:
Period: \qquad Date: \qquad

Answer each of the following questions. Be specific and thorough.

1) Write the equilibrium dissociation equation as well as the solubility product equation for each of the following:
a. Calcium Sulfide
b. Lead (II) Sulfate
c. Silver Phosphate
d. Mercury (I) Iodide
e. Iron (III) Hydroxide
2) Use your understanding of solubility products and solubility to answer each of the following questions:
a. If the K_{sp} of nickel (II) sulfide is 4.0×10^{-20}, what is the concentration of each at equilibrium?
b. If the $\mathrm{K}_{\text {sp }}$ of silver sulfide is 8.0×10^{-51}, what is the concentration of each ion at equilibrium?
c. Based on the solubility products, which substance is more soluble in water? Why?
d. Does your answers for a and b verify your answer for c ? Why or why not?
3) The $K_{\text {sp }}$ of silver bromide is 5.00×10^{-13}, what would be the bromide-ion concentration of a 1.00 L saturated solution of silver bromide if 0.0400 mol of silver nitrate is added to the solution?
4) What symbol do we use for entropy and what does it measure?
a. What does a negative entropy mean?
b. What does a positive entropy mean?
5) Will the entropy for each of the following be positive or negative? Why?
a. Sugar dissolving in tea
d. $\mathrm{CaCO}_{3_{(a q)}} \rightarrow \mathrm{CaO}_{(a q)}+\mathrm{CO}_{2(g)}$
b. Frost forming on a window pane
e. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c. Air pumped into a tire
6) What symbol do we use for enthalpy and what does it measure?
7) What symbol do we use for free energy and what does it measure?
a. What does a negative free energy mean?
b. What does a positive free energy mean?
8) Calculate the free energy for each of the following reactions using the information given. Will the reaction occur at the temperature given?
a. $\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta H=-638.4 \mathrm{~kJ} \quad \Delta S=1.56 \frac{\mathrm{~kJ}}{\mathrm{~K}} \quad 0^{\circ} \mathrm{C}$
b. $\quad C_{2} H_{4(g)}+H_{2(g)} \rightarrow C_{2} H_{6(g)} \quad \Delta H=-136.9 k J \quad \Delta S=-1.207 \frac{\mathrm{~kJ}}{\mathrm{~K}} \quad 25^{\circ} \mathrm{C}$

Reaction \#1			Reaction \#2		
Initial [A]	Initial [B]	Initial Rate	Initial [A]	Initial [B]	Initial Rate
0.100	.200	5.4×10^{-7}	0.250	0.250	1.0×10^{-3}
0.200	.200	10.8×10^{-7}	0.250	0.500	4.0×10^{-3}
0.200	.400	21.6×10^{-7}	0.500	0.250	9.0×10^{-3}

9) Use the information from the table for Reaction \#1 to answer each of the following:
a. What is the order of the reaction for A? Explain.
b. What is the order of the reaction for B? Explain.
c. What is the overall order of the reaction? Explain.
d. What is the rate equation for Reaction \#1?
10) Use the information from the table for Reaction \#2 to answer each of the following:
a. What is the order of the reaction for A? Explain.
b. What is the order of the reaction for B? Explain.
c. What is the overall order of the reaction? Explain.
d. What is the rate equation for Reaction \#2?
