Chapter 18 WS

 Name:

 Period:

K_{sp}, Gibbs, Order of Reactions

Answer each of the following questions. Be specific and thorough.

- Write the equilibrium dissociation equation as well as the solubility product equation for each of the following:

 Calcium Sulfide
 - b. Lead (II) Sulfate
 - c. Silver Phosphate
 - d. Mercury (I) Iodide
 - e. Iron (III) Hydroxide
- 2) Use your understanding of solubility products and solubility to answer each of the following questions:
 - a. If the K_{sp} of nickel (II) sulfide is 4.0×10^{-20} , what is the concentration of each at equilibrium?
 - b. If the K_{sp} of silver sulfide is 8.0×10^{-51} , what is the concentration of each ion at equilibrium?
 - c. Based on the solubility products, which substance is more soluble in water? Why?
 - d. Does your answers for a and b verify your answer for c? Why or why not?
- 3) The K_{sp} of silver bromide is 5.00×10^{-13} , what would be the bromide-ion concentration of a 1.00 L saturated solution of silver bromide if 0.0400 mol of silver nitrate is added to the solution?
- 4) What symbol do we use for entropy and what does it measure?
 - a. What does a negative entropy mean? b. What does a positive entropy mean?

5) Will the entropy for each of the following be positive or negative? Why? a. Sugar dissolving in tea d. $CaCO_{3(aq)} \rightarrow CaO_{(aq)} + CO_{2(q)}$

b. Frost forming on a window pane

e. $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

c. Air pumped into a tire

- 6) What symbol do we use for enthalpy and what does it measure?7) What symbol do we use for free energy and what does it measure?
 - a. What does a negative enthalpy mean? a. What does a negative free energy mean?
 - b. What does a positive enthalpy mean? b. What does a positive free energy mean?
- 8) Calculate the free energy for each of the following reactions using the information given. Will the reaction occur at the temperature given?

a.
$$CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$
 $\Delta H = -638.4 \ kJ$ $\Delta S = 1.56 \ \frac{kJ}{K}$ 0°C

b.
$$C_2 H_{4(g)} + H_{2(g)} \rightarrow C_2 H_{6(g)}$$
 $\Delta H = -136.9 \, kJ$ $\Delta S = -1.207 \, \frac{kJ}{K}$ 25°C

Reaction #1			Reaction #2		
Initial [A]	Initial [B]	Initial Rate	Initial [A]	Initial [B]	Initial Rate
0.100	.200	5.4x10 ⁻⁷	0.250	0.250	1.0x10 ⁻³
0.200	.200	10.8x10 ⁻⁷	0.250	0.500	4.0x10 ⁻³
0.200	.400	21.6x10 ⁻⁷	0.500	0.250	9.0x10 ⁻³

9) Use the information from the table for Reaction #1 to answer each of the following:a. What is the order of the reaction for A? Explain.

- b. What is the order of the reaction for B? Explain.
- c. What is the overall order of the reaction? Explain.
- d. What is the rate equation for Reaction #1?
- 10) Use the information from the table for Reaction #2 to answer each of the following:
 - a. What is the order of the reaction for A? Explain.
 - b. What is the order of the reaction for B? Explain.
 - c. What is the overall order of the reaction? Explain.
 - d. What is the rate equation for Reaction #2?