\qquad

A/B Models \& Basic Calculations

Period: \qquad Date: \qquad

1) What are the basic properties of Acids?

- Sour Taste
- More $[\mathrm{H}+]$ than [OH-]
- $\mathrm{pH}<7$
- Turn Litmus Paper Red
- React with metals
- $\mathrm{POH}>7$

2) What are the basic properties of Bases?

- Slippery \& Bitter Taste
- More [OH-] than [H+]
- $\mathrm{pH}>7$
- Turn Litmus Paper Blue
- React with organics
- $\mathrm{POH}<7$

3) Fill in the following table for the 3 different definitions of acids and bases:

Model	Acid	Base	Examples
Arrhenius	$\begin{gathered} \hline \text { Contain \& } \\ \text { Produce } \\ \text { H+ Ions } \\ \hline \end{gathered}$	Contain \& Produce OH - Ions	$\begin{gathered} \text { Acid }=\mathrm{HX} \rightarrow \mathrm{H}^{+}+\mathrm{X}^{-} \\ \text {Base }=\mathrm{XOH} \rightarrow \mathrm{X}^{+}+\mathrm{OH}^{-} \end{gathered}$
BronstedLowry	$\mathrm{H}+$ ion donor	$\mathrm{H}+$ ion acceptor	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Lewis	e- pair acceptor	e- pair donor	

4) Label each of the following as monoprotic, diprotic, or triprotic acids:
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
diprotic
d. $\mathrm{CH}_{3} \mathrm{COOH}$ monoprotic
b. HF
e. HNO_{3}
monoprotic
monoprotic
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$
triprotic
f. $\mathrm{H}_{2} \mathrm{MnO}_{4}$
diprotic
5) What is a conjugate acid?

Substance created when a Bronsted-Lowry base accepts a H+ ion from the Bronsted-Lowry acid. Is the acid for the reverse reaction
6) What is a conjugate base?

Substance created when a Bronsted-Lowry acid donates an H+ ion from the Bronsted-Lowry base. Is the base for the reverse reaction
7) Identify the acid, base, conjugate acid, and conjugate base in the following equation:

$$
\underset{\text { Acid }}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { Base }}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \underset{\text { C. Base }}{\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}
$$

8) What does amphoteric mean and what chemical is THE example of it?

Amphoteric means the substance can be both an acid and a base. Water is the best example of an amphoteric substance
9) What is the chemical equation for the self-ionization of water?

$$
\mathrm{H}_{2} \mathrm{O}_{(l)} \leftrightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

10) What is the formula for Kw , what is the value of it, and what do the two parts stand for?

$$
K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

11) How can you determine whether a solution is acidic/basic by just the concentrations?

Acidic $=$ More $[\mathrm{H}+]$ than $[\mathrm{OH}-]$
Basic $=$ More $[\mathrm{OH}-]$ than $[\mathrm{H}+]$
12) What is the formula for pH and the formula for pOH ?
$\mathrm{pH}=-\log [\mathrm{H}+]$
$\mathrm{pOH}=-\log [\mathrm{OH}-]$
13) When you add the pH and pOH it must always equal what number? Write the equation. $\mathrm{pH}+\mathrm{pOH}=14$
14) Fill in the table with the missing information. Be sure to show work below.

pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pOH	$\left[\mathrm{OH}^{-}\right]$	ACID or BASE?
3.78	1.66×10^{-4}	10.22	6.03×10^{-11}	Acid
3.41	$3.89 \times 10^{-4} \mathrm{M}$	10.59	2.57×10^{-11}	Acid
8.81	1.55×10^{-9}	5.19	6.46×10^{-6}	Base
8.69	2.04×10	5.31	$4.88 \times 10^{-6} \mathrm{M}$	Base
8.46	3.47×10^{-9}	5.54	2.88×10^{-6}	Base
12.08	$8.45 \times 10^{-13} \mathrm{M}$	1.92	1.19×10^{-2}	Base
11.86	1.38×10^{-12}	2.14	7.24×10^{-3}	Base
3.36	4.33×10^{-4}	10.64	$2.31 \times 10^{-11} \mathrm{M}$	Acid

