Chapter 19 WS

A/B Strength, Neutralization, \& Salts

Name: \qquad
Period: \qquad Date: \qquad

1) When talking about solutions, what do the words "strong" and "weak" actually represent?

Strong = Completely Ionizes
Weak = Partially Ionizes
2) What is the generic formula for the acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for the generic acid HA?

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

3) Acids with a large K_{a} are considered STRONG acids because they are COMPLETELY ionized, and acids with a small K_{a} are WEAK acids because they are PARTIALLY ionized.
4) What is the generic formula for the base dissociation constant $\left(\mathrm{K}_{\mathrm{b}}\right)$ for the generic base XOH ?

$$
K_{b}=\frac{\left[X^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{XOH}]}
$$

5) Bases with a LARGE K_{b} are considered STRONG bases because they are highly ionized, and bases with a SMALL K_{b} are WEAK bases because they are slightly ionized.
6) What would be the K_{a} or K_{b} for the following acids if the following are equilibrium concentrations?
a. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=2.00 \mathrm{M},\left[\mathrm{H}^{+}\right]=9.80 \times 10^{-6},\left[\mathrm{HCO}_{3}^{-}\right]=9.80 \times 10^{-6}} \\
& K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[H A]}=\frac{\left(9.8 \times 10^{-6}\right)^{2}}{2.00}=4.80 \times 10^{-11}
\end{aligned}
$$

b. $H_{2} S \rightarrow H^{+}+H^{-}$

$$
\left[H_{2} S\right]=8.25 \mathrm{M},\left[H^{+}\right]=9.08 \times 10^{-4} \mathrm{M},\left[\mathrm{HS}^{-}\right]=9.08 \times 10^{-4} \mathrm{M}
$$

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{\left(9.08 \times 10^{-4}\right)^{2}}{8.25}=9.99 \times 10^{-8}
$$

c. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

$$
\left[\mathrm{NH}_{3}\right]=0.250 \mathrm{M},\left[\mathrm{NH}_{4}^{+}\right]=2.12 \times 10^{-3} \mathrm{M},\left[\mathrm{H}^{+}\right]=2.12 \times 10^{-3} \mathrm{M}
$$

$$
K_{b}=\frac{\left[X^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{XOH}]}=\frac{\left(2.12 \times 10^{-3}\right)^{2}}{0.250}=1.80 \times 10^{-5}
$$

d. $\mathrm{H}_{2} \mathrm{NNH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{NNH}_{3}^{+}+\mathrm{OH}^{-}$

$$
\left[H_{2} N N H_{2}\right]=0.120 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{NNH}_{3}^{+}\right]=8.76 \times 10^{-4} \mathrm{M},\left[\mathrm{OH}^{-}\right]=8.76 \times 10^{-4} \mathrm{M}
$$

$$
K_{b}=\frac{\left[X^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{XOH}]}=\frac{\left(8.76 \times 10^{-4}\right)^{2}}{0.120}=6.39 \times 10^{-6}
$$

7) What are the products of acid/base reactions?

$$
\text { Acid }+ \text { Base } \rightarrow \text { SALT }+ \text { WATER }
$$

8) What is the equivalence point of a titration?

The point at which the amount (mol) of acid $(\mathrm{H}+)$ is equal to the amount (mol) of base (OH)
9) What is the end point of a titration?

The point at which the solution changes color
10) What is the formula for calculating titrations?
$\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} \mathrm{i}_{\mathrm{b}}$ or $\mathrm{N}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{N}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$
11) What is the normality of the following acids and bases?
a. $\quad 2.0 \mathrm{M} \mathrm{NaOH}$
$2.0 \mathrm{M} \mathrm{NaOH}\left|\frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}^{\prime}}\right|=2.0 \mathrm{~N} \mathrm{NaOH}$
c. $.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
$0.5 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}\left|\frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}}\right|=1.0 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$

b. $\quad 1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$

$$
1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}\left|\frac{3 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}\right|=3.0 \mathrm{~N} \mathrm{H}_{3} \mathrm{PO}_{4}
$$

d. $\quad 1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
$1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left|\frac{2 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right|=3.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
12) Calculate the missing part of each of the following titrations:
a. 25 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated with 40 mL of NaOH . What is the concentration of the NaOH ?

$$
M_{a} V_{a} i_{a}=M_{b} V_{b} i_{b}
$$

$$
(1.0)(25)(2)=M_{b}(40)(1)
$$

$$
1.2 \mathrm{M} \mathrm{NaOH}=M_{b}
$$

b. $\quad 3.0 \mathrm{~L}$ of sulfuric acid titrates with 1.0 L of $1.0 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}$. What is the concentration of the acid?

$$
\begin{gathered}
M_{a} V_{a} i_{a}=M_{b} V_{b} i_{b} \\
M_{a}(3.0)(2)=(1.0)(1.0)(3.0) \\
M_{a}=2.0 \mathrm{MH}_{2} S O_{4}
\end{gathered}
$$

c. $10 . \mathrm{mL}$ of 0.50 M HCl titrates $50 . \mathrm{mL}$ of an $\mathrm{Al}(\mathrm{OH})_{3}$ solution. What molarity is the base?

$$
\begin{array}{rl}
M_{a} V_{a} i_{a} & =M_{b} V_{b} i_{b} \\
(0.5)(10)(1) & =\left(M_{b}\right)(50)(3) \\
M_{b}=0.03 & M \operatorname{Al}(O H)_{3}
\end{array}
$$

d. $\quad 7.5 \mathrm{~L}$ of 1.0 M tetra-protic acid is titrated with a 3.0 M KOH solution. What volume is needed?

$$
\begin{gathered}
M_{a} V_{a} i_{a}=M_{b} V_{b} i_{b} \\
(1.0)(7.5)(4)=(3.0) V_{b}(1) \\
10 . \mathrm{NaOH}=V_{b}
\end{gathered}
$$

13) In some instances, adding a salt to water will turn the solution into an acid or a base. There are 4 basic rules for predicting the acidity, basicity, or neutrality of a solution when a salt is added... what are they?
a. Strong Acid + Strong Base $=$ Neutral Solution
b. Weak Acid + Weak Base $=$ Neutral Solution
c. Strong Acid + Weak Base $=$ Acidic Solution
d. Weak Acid + Strong Base $=$ Basic Solution
14) If the K_{a} of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is 6.40×10^{-5}, what would be the concentration of hydrogen ion in a 0.300 M solution of ethanoic acid?
a. Write the equation for the dissociation of ethanoic acid:

$$
\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

b. Calculate the initial concentration, change in concentration, and final concentration of all three parts of the dissociation equation:

Reaction	Ethanoic Acid	Ethanoate	Hydrogen Ion
Initial	0.300	0	0
Change	-x	+x	+x
Final	$0.300-\mathrm{x}$	x	x

c. Write the formula for K_{a}, substitute in your final concentrations from part b, and then solve for your unknown amount... You are gonna need the quadratic formula for this one!

$$
\begin{gathered}
\mathrm{K}_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
6.40 \times 10^{-5}=\frac{[x][x]}{[0.300-x]} \\
6.40 \times 10^{-5}=\frac{[x][x]}{[0.300-x]} \\
1.92 \times 10^{-6}-6.4 \times 10^{-5} x=x^{2} \\
0=-1.92 \times 10^{-6}+6.4 \times 10^{-5} x+x^{2}
\end{gathered}
$$

Quadratic Equation $\mathrm{x}=1.35 \times 10^{-3}$
[Ethanoic Acid] $=0.299 \mathrm{M}$
[Ethanoate] $=1.35 \times 10^{-3} \mathrm{M}$ $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-3} \mathrm{M}$
15) Determine which acids and bases the following salts hydrolyze into and then determine whether the resulting solution will be acidic, basic, or neutral:
a. NaCl

$$
\begin{gathered}
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NaOH}+\mathrm{HCl} \\
\text { Neutral }=\text { Strong } B+\text { Strong } A
\end{gathered}
$$

b. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{3} \mathrm{PO}_{4}$ Neutral $=$ Weak $B+$ Weak A
c. $\quad \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

$$
\begin{gathered}
\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
\text { Neutral }=\text { Weak } B+\text { Weak } A
\end{gathered}
$$

d. $\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{KOH}+\mathrm{H}_{2} \mathrm{CO}_{3}$ Basic $=$ Strong $B+$ Weak A

