Relativity PT

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- _ 1. Relativity equations for time, length, and momentum hold true for
 - a. everyday low speeds.
 - b. relativistic speeds.
 - c. both A and B
 - d. none of the above
- _____ 2. The correspondence principle says that
 - a. any new theory must correctly predict observations.
 - b. the new theory is correct.
 - c. the old theory is correct.
 - d. any new theory must agree with the old correct theory.
- _____ 3. If Einstein's equations of special relativity are valid, they must
 - a. reduce to Newton's equations when the speed is small.
 - b. give correct answers for speeds much less than the speed of light.
 - c. agree with the correct results of Newton's equations.
 - d. both A and C
 - e. A, B, and C

4. A woman standing on the ground sees a rocket ship move past her at 95% the speed of light. Compared to the rocket at rest, the woman sees the rocket's length as

- a. longer.
- b. the same.
- c. shorter.
- 5. A 10-meter-long spear is thrown at a relativistic speed through a 10-meter-long pipe (both measured when at rest.) When the spear passes through the pipe,
 - a. the pipe shrinks so the spear extends at both ends.
 - b. both shrink equally so the pipe barely covers the spear.
 - c. the spear shrinks so the pipe completely covers it.
 - d. any of the above, depending on the motion of the observer
 - e. none of the above
- 6. When you approach a light source, the wavelength of emitted light appears _____.a. shorterb. the samec. longer
- 7. As a blinking light source approaches you at an increasing speed, the frequency of the flashesa. increases.b. stays the same.c. decreases.
- 8. Compared to time kept on Earth, there is a physical slowing of time when you travel at _____.
 - a. everyday low speeds.
 - b. relativistic speeds.
 - c. both A and B
 - d. none of the above
- 9. Einstein reasoned that _____
 - a. all motion is relative

- b. a spaceship cannot measure its speed relative to empty space
- c. a spaceship can only measure its speed relative to other objects
- d. all of the above
- 10. Suppose an alien invites you to take a trip on her spaceship. If you travel at the speed of light, you would be
 - a. travelling through neither space nor time
 - b. travelling through both space and time
 - c. travelling through time but not through space
 - d. travelling through space but not through time

True/False

Indicate whether the statement is true or false.

- 11. In the presence of strong gravitational fields, four-dimensional geometry must be used in place of Euclidean geometry.
- 12. Einstein's special relativity cannot explain why Mercury precesses an extra 43 arc seconds per century beyond the precession expected due to the effects of the other planets.
- 13. If a person takes a ride on a fast-moving spaceship, she will return to Earth older than she would be if she had stayed on Earth for the same length of time.
- _____ 14. Einstein reasoned that space and time are two parts of one whole called space-time.
 - _ 15. The speed of light can change when measured in different reference frames.

Essay

- 16. How much rest energy is contained in a 0.01-kg quarter?
- 17. The sun radiates about 3.6×10^{26} joules of energy each second. How much mass does the sun lose each second?
- 18. Derive the time dilation equation found in Section 15.6 of the text. Explain each step of the derivation.

Problem

- 19. What is the energy equivalent of 5.0 kg of mass?
- 20. What is the mass equivalent of 2.0 MJ?

Relativity PT Answer Section

MULTIPLE CHOICE

1.	ANS:	С	PTS:	1	DIF:	L1	OBJ:	16.3 The Correspondence Principle
	STA:	Ph.6.f	KEY:	relativity time	e mon	nentum	BLM:	knowledge
2.	ANS:	D	PTS:	1	DIF:	L1	OBJ:	16.3 The Correspondence Principle
	STA:	Ph.6.f	KEY:	correspondenc	e prin	ciple	BLM:	knowledge
3.	ANS:	E	PTS:	1	DIF:	L2	OBJ:	16.3 The Correspondence Principle
	STA:	Ph.6.f	KEY:	Einstein New	ton		BLM:	analysis
4.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	15.6 Length Contraction
	KEY:	speed light	BLM:	comprehension	n			
5.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	15.6 Length Contraction
	KEY:	relativistic ob	oserver		BLM:	comprehension	n	
6.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	15.5 Space and Time Travel
	KEY:	wavelength	BLM:	comprehension	n			
7.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	15.5 Space and Time Travel
	KEY:	light speed i	ncrease		BLM:	comprehension	n	
8.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	15.4 Time Dilation
	KEY:	time slow	BLM:	comprehension	n			
9.	ANS:	D	PTS:	1	DIF:	L1		
	OBJ:	15.2 The First	Postula	te of Special R	elativit	У	KEY:	Einstein relative
	BLM:	knowledge						
10.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	15.1 Space-Time
	KEY:	space-time tim	me dilat	ion	BLM:	application		

TRUE/FALSE

11.	ANS: T	PTS: 1	DIF: L1	
	OBJ: 16.5 Gravity	y, Space, and a New (Geometry	KEY: gravity geometry relativity
	BLM: knowledge			
12.	ANS: F	PTS: 1	DIF: L2	OBJ: 16.6 Tests of General Relativity
	KEY: general rela	tivity precession	BLM: knowledge	
13.	ANS: F	PTS: 1	DIF: L2	OBJ: 15.5 Space and Time Travel
	KEY: time distant	ice speed	BLM: comprehension	on
14.	ANS: T	PTS: 1	DIF: L1	OBJ: 15.1 Space-Time
	KEY: Einstein sp	bace time	BLM: knowledge	-
15.	ANS: F	PTS: 1	DIF: L2	
	OBJ: 15.3 The Se	cond Postulate of Spe	ecial Relativity	KEY: relativity
	BLM: knowledge			

ESSAY

16. ANS: $E_0 = mc^2 = (0.01 \text{ kg})(3 \times 10^8 \text{ m/s})^2 = 9.0 \times 10^{14} \text{ J}$

	PTS: 1 DIF: L2	OBJ: 16.2 Equivalence of Mass and Energy
	KEY: rest energy mass	BLM: application
17.	ANS:	
	$m = \frac{E_0}{c^2} = \frac{3.6 \times 10^{26} \text{ J}}{\left(3 \times 10^8 \text{ m/s}\right)^2} = 4.0 \times 10^9 \text{ kg}$	lost each second!
	PTS: 1 DIF: L2	OBJ: 16.2 Equivalence of Mass and Energy
	KEY: mass energy loss	BLM: application
18.	ANS:	
	The product $c \cdot t$ represents the distance the represents the distance a person moving w	light flash moves in going to the top mirror. The product $c \cdot t$ ith the mirror sees the light flash move, and the product $v \cdot t$ i

The product $c \cdot t$ represents the distance the light flash moves in going to the top mirror. The product $c \cdot t_o$ represents the distance a person moving with the mirror sees the light flash move, and the product $v \cdot t$ is the distance the ship has moved in time t. Applying the Pythagorean Theorem to this triangle, we have the equation shown in the box titled "The Time Dilation Equation."

PTS:	1	DIF:	L2	OBJ:	15.4 Time Dilation	
KEY:	derivation	dilation		BLM:	analysis	

PROBLEM

19.	ANS: $4.5 \times 10^{17} \text{ J}$			
	PTS: 1 KEY: energy mass	DIF: L2 equation	OBJ: BLM:	16.2 Equivalence of Mass and Energy application
20.	20. ANS: 2.2 \times 10 ⁻¹¹ kg			
	PTS: 1 KEY: mass	DIF: L2 BLM: application	OBJ:	16.2 Equivalence of Mass and Energy