Relativity PT

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Relativity equations for time, length, and momentum hold true for
a. everyday low speeds.
b. relativistic speeds.
c. both A and B
d. none of the above
\qquad 2. The correspondence principle says that
a. any new theory must correctly predict observations.
b. the new theory is correct.
c. the old theory is correct.
d. any new theory must agree with the old correct theory.
2. If Einstein's equations of special relativity are valid, they must
a. reduce to Newton's equations when the speed is small.
b. give correct answers for speeds much less than the speed of light.
c. agree with the correct results of Newton's equations.
d. both A and C
e. A, B, and C
\qquad 4. A woman standing on the ground sees a rocket ship move past her at 95% the speed of light. Compared to the rocket at rest, the woman sees the rocket's length as
a. longer.
b. the same.
c. shorter.
\qquad 5. A 10 -meter-long spear is thrown at a relativistic speed through a 10 -meter-long pipe (both measured when at rest.) When the spear passes through the pipe,
a. the pipe shrinks so the spear extends at both ends.
b. both shrink equally so the pipe barely covers the spear.
c. the spear shrinks so the pipe completely covers it.
d. any of the above, depending on the motion of the observer
e. none of the above
3. When you approach a light source, the wavelength of emitted light appears \qquad .
a. shorter
b. the same
c. longer
4. As a blinking light source approaches you at an increasing speed, the frequency of the flashes
a. increases.
b. stays the same.
c. decreases.
5. Compared to time kept on Earth, there is a physical slowing of time when you travel at \qquad .
a. everyday low speeds.
b. relativistic speeds.
c. both A and B
d. none of the above
\qquad 9. Einstein reasoned that \qquad .
a. all motion is relative
b. a spaceship cannot measure its speed relative to empty space
c. a spaceship can only measure its speed relative to other objects
d. all of the above
6. Suppose an alien invites you to take a trip on her spaceship. If you travel at the speed of light, you would be
a. travelling through neither space nor time
b. travelling through both space and time
c. travelling through time but not through space
d. travelling through space but not through time

True/False

Indicate whether the statement is true or false.
11. In the presence of strong gravitational fields, four-dimensional geometry must be used in place of Euclidean geometry.
12. Einstein's special relativity cannot explain why Mercury precesses an extra 43 arc seconds per century beyond the precession expected due to the effects of the other planets.
13. If a person takes a ride on a fast-moving spaceship, she will return to Earth older than she would be if she had stayed on Earth for the same length of time.
14. Einstein reasoned that space and time are two parts of one whole called space-time.
15. The speed of light can change when measured in different reference frames.

Essay

16. How much rest energy is contained in a $0.01-\mathrm{kg}$ quarter?
17. The sun radiates about 3.6×10^{26} joules of energy each second. How much mass does the sun lose each second?
18. Derive the time dilation equation found in Section 15.6 of the text. Explain each step of the derivation.

Problem

19. What is the energy equivalent of 5.0 kg of mass?
20. What is the mass equivalent of 2.0 MJ ?

Relativity PT

Answer Section

MULTIPLE CHOICE

TRUE/FALSE

11. ANS: T PTS: 1 DIF: L1

OBJ: 16.5 Gravity, Space, and a New Geometry KEY: gravity | geometry | relativity
BLM: knowledge
12. ANS: F PTS. 1 DIF. L2

KEY: general relativity \mid precession
13. ANS: F PTS: 1

KEY: time | distance | speed
14. ANS: T PTS: 1

KEY: Einstein | space | time
15. ANS: F PTS: 1

OBJ: 15.3 The Second Postulate of Special Relativity KEY: relativity
BLM: knowledge

ESSAY

16. ANS:
$E_{0}=m c^{2}=(0.01 \mathrm{~kg})\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=9.0 \times 10^{14} \mathrm{~J}$

PTS: 1 DIF: L2 OBJ: 16.2 Equivalence of Mass and Energy
KEY: rest \mid energy | mass BLM: application
17. ANS:
$m=\frac{E_{0}}{c^{2}}=\frac{3.6 \times 10^{26} \mathrm{~J}}{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=4.0 \times 10^{9} \mathrm{~kg}$ lost each second!
PTS: $1 \quad$ DIF: L2
KEY: mass \mid energy \mid loss
18. ANS:

The product $c \cdot t$ represents the distance the light flash moves in going to the top mirror. The product $c \cdot t_{o}$ represents the distance a person moving with the mirror sees the light flash move, and the product $v \cdot t$ is the distance the ship has moved in time t. Applying the Pythagorean Theorem to this triangle, we have the equation shown in the box titled "The Time Dilation Equation."

PTS: 1
DIF: L2
KEY: derivation | dilation

PROBLEM

19. ANS:
$4.5 \times 10^{17} \mathrm{~J}$
PTS: 1 DIF: L2
KEY: energy | mass | equation
20. ANS:
$2.2 \times 10^{-11} \mathrm{~kg}$
PTS: 1 DIF: L2
KEY: mass
BLM: application

OBJ: 15.4 Time Dilation
BLM: analysis

OBJ: 16.2 Equivalence of Mass and Energy
BLM: application

OBJ: 16.2 Equivalence of Mass and Energy

