Sound & Waves PT

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- _ 1. Sound waves are produced by
 - a. radio stations.
 - b. vibrating objects.
 - c. soft objects.
 - d. objects under pressure.
 - e. none of the above
- _____ 2. Sound waves in air are a series of
 - a. periodic disturbances.
 - b. periodic condensations and rarefactions.
 - c. high- and low-pressure regions.
 - d. all of the above
 - e. none of the above
 - _ 3. Which of the following would be most likely to transmit sound with the highest speed?
 - a. Steel in a bridge
 - b. Wood in a cabinet
 - c. Water in the ocean
 - d. Water in a swimming pool
 - e. Air in your classroom
 - 4. A sound wave is a
 - a. standing wave.
 - b. longitudinal wave.
 - c. transverse wave.
 - d. shock wave.
 - e. none of the above
 - 5. The speed of a sound wave depends on
 - a. the air temperature.
 - b. its frequency.
 - c. its wavelength.
 - d. all of the above
 - e. none of the above
 - 6. A tuning fork of frequency 300 Hz will resonate if a sound wave incident on it has a frequency of a. 150 Hz.
 - b. 600 Hz.
 - c. both A and B
 - d. none of the above
 - 7. In which one of the following does sound travel the fastest?
 - a. Water
 - b. Ice
 - c. Steam
 - d. Sound travels at the same speed in all of the above.

- 8. An explosion occurs 340 km away. Given that sound travels at 340 m/s, the time the sound takes to reach you is
 - a. 1 s.
 - b. 10 s.
 - c. 100 s.
 - d. 200 s.
 - e. more than 200 s.
- 9. The Tacoma Narrows Bridge collapsed due to
 - a. resonance.
 - b. frequency modulation.
 - c. beats.
 - d. destructive interference.
- 10. A general rule for estimating the distance in kilometers between an observer and a lightning bolt is to count the number of seconds between seeing and hearing the bolt, and divide by
 - a. 2.
 - b. 3.
 - c. 4.
 - d. 5.
 - e. none of the above
- 11. Compared to a sound of 10 decibels, a sound of 50 decibels has
 - a. 40 times the intensity.
 - b. 400 times the intensity.
 - c. 10,000 times the intensity.
- 12. Beats are produced when two tuning forks, one of frequency 240 Hz and the other of frequency 248 Hz, are sounded together. The frequency of the beats is
 - a. 8 Hz.
 - b. 16 Hz.
 - c. 240 Hz.
 - d. 247 Hz.
 - e. none of the above
- 13. Two whistles produce sounds of wavelengths 3.4 m and 3.2 m. What is the beat frequency produced?
 - a. 0.2 Hz
 - b. 2.0 Hz
 - c. 4.0 Hz
 - d. 6.3 Hz
 - e. 8.3 Hz
- 14. Suppose you sound a tuning fork at the same time you hit a 1053-Hz note on the piano and hear 3 beats/sec. You tighten the piano string very slightly and now hear 4 beats/sec. What is the frequency of the tuning fork?
 - a. 1049 Hz
 - b. 1050 Hz
 - c. 1053 Hz
 - d. 1056 Hz
 - e. 1057 Hz
- 15. A sound wave that has a wavelength of 2 m in room-temperature air has a frequency of about
 - a. 170 Hz.
 - b. 1360 Hz.

- c. 2040 Hz.
- d. none of the above
- 16. You are water-skiing on a lake, and you are being pulled by a noisy motorboat. Another motor boat is speeding through the water a bit ahead of your boat so that rarefactions from its motor hit you when compressions from your boat's motor hit you. You hear
 - a. almost nothing due to constructive interference.
 - b. almost nothing due to destructive interference.
 - c. louder noise than if you were only listening to one boat.
 - d. louder noise than if you were only listening to two boats.
 - 17. The time needed for a wave to make one complete cycle is its
 - a. frequency.
 - b. velocity.
 - c. amplitude.
 - d. period.
 - e. wavelength.

_____18. The distance between successive identical parts of a wave is called its

- a. frequency.
- b. period.
- c. velocity.
- d. amplitude.
- e. wavelength.
- _____ 19. The Hertz is a
 - a. special radio wave.
 - b. type of car.
 - c. unit of period.
 - d. unit of wavelength.
 - e. unit of frequency.
- _____ 20. A wave created by shaking a rope up and down is called a
 - a. Doppler wave.
 - b. standing wave.
 - c. longitudinal wave.
 - d. constructive wave.
 - e. transverse wave.
- _____ 21. Sound is an example of a
 - a. longitudinal wave.
 - b. constructive wave.
 - c. Doppler wave.
 - d. transverse wave.
 - e. standing wave.
 - ____ 22. A longitudinal wave lacks which of the following properties?
 - a. speed.
 - b. frequency.
 - c. wavelength.
 - d. amplitude.
 - e. A longitudinal wave has all of the above.

- 23. As the sound of a car's horn passes and recedes from you, the pitch of the horn seems to
 - a. increase.
 - b. stay the same.
 - c. decrease.
- _____ 24. When a sound source moves towards you, what happens to the wave speed?
 - a. It decreases.
 - b. It increases.
 - c. It stays the same.
- _____ 25. The amplitude of a particular wave is 4.0 m. The top-to-bottom distance of the disturbance is
 - a. 2.0 m.
 - b. 4.0 m.
 - c. 8.0 m.
 - d. none of the above
- _____ 26. When a pendulum clock is taken from sea level to the top of a high mountain, it will
 - a. neither lose nor gain time.
 - b. gain time.
 - c. lose time.
- _____ 27. During a single period, the distance traveled by a wave is
 - a. two wavelengths.
 - b. one wavelength.
 - c. one half wavelength.
 - 28. A child swings back and forth on a playground swing. If the child stands rather than sits, the time for a to-and-fro swing is
 - a. unchanged.
 - b. lengthened.
 - c. shortened.
- 29. A horse would be able to run faster if most of the mass in its legs were concentrated
 - a. in the upper part, nearer the horse's body.
 - b. halfway up its legs.
 - c. toward its feet.
 - d. uniformly all along its legs.
 - e. none of the above
- _____ 30. What happens when an airplane is flying faster than the speed of sound?
 - a. There is no sonic boom.
 - b. It becomes very quiet inside the plane.
 - c. Nobody can hear the plane fly overhead.
 - d. A shock wave is produced.
 - e. none of the above
- _____ 31. An observer on the ground hears a sonic boom that is created by an airplane flying at a speed
 - a. equal to the speed of sound.
 - b. greater than the speed of sound.
 - c. just below the speed of sound.
 - d. none of the above
 - 32. The Doppler effect occurs when a source of sound moves

- a. away from you.
- b. toward you.
- c. both A and B
- d. none of the above
- _____ 33. The frequency of the second hand on a clock is
 - a. $\frac{1}{60}$ hertz.
 - b. 1 hertz.
 - c. 60 hertz.

_____ 34. Two waves arrive at the same place at the same time exactly in step with each other. Each wave has an amplitude of 2.5 m. The resulting wave has an amplitude of

- a. 0.6 m.
- b. 1.3 m.
- c. 2.5 m.
- d. 5.0 m.
- e. 10.0 m.
- _____ 35. A certain ocean wave has a frequency of 0.07 hertz and a wavelength of 10 meters. What is the wave's speed? a. 0.07 m/s
 - a. 0.07 m/s
 - b. 0.70 m/s
 - c. 1.0 m/s d. 10 m/s
 - u. 10 III/s
 - e. 143 m/s

_ 36. A cork floating in a pool oscillates up and down three complete cycles in 1 second as a wave passes by. The wave's wavelength is 2 meters. What is the wave's speed?

- a. 1 m/s
- b. 2 m/s
- c. 6 m/s
- d. 12 m/s
- e. More than 12 m/s
- _____ 37. A wave travels an average distance of 6 meters in 3 seconds. What is the wave's velocity?
 - a. Less than 0.5 m/s
 - b. 3 m/s
 - c. 1 m/s
 - d. 2 m/s
 - e. More than 2 m/s

38. A wave has two crests and two troughs each second. If the wave travels an average distance of 8 meters in 4 seconds, its wavelength is

- a. 20 m.
- b. 15 m.
- c. 10 m.
- d. 1 m.
- e. 0 m.
- _ 39. Radio waves travel at the speed of light, 300,000 km/s. The wavelength of a radio wave received at 200 megahertz is
 - a. 0.7 m.
 - b. 1.5 m.

- c. 6.7 m.
- d. 15 m.
- 40. A skipper on a boat notices wave crests passing the anchor chain every 6.0 seconds. The skipper estimates the distance between crests at 30.0 m. What is the speed of the water waves?
 - a. 5.0 m/s
 - b. 6.0 m/s
 - c. 30.0 m/s
 - d. not enough information given

True/False

Indicate whether the statement is true or false.

- 41. When an object is forced to vibrate at its natural frequency, resonance occurs.
- 42. Sound can travel through solids, liquids, gases, and even a vacuum.
- 43. In order for sound from a speaker to reach a listener, air near the speaker must travel to the listener.
- _____ 44. Almost everything that exists has a natural frequency.
- 45. Even a steel bridge can collapse because of resonance.
- _____ 46. The word "pitch" refers to the period of a sound wave.
- 47. If you strike a tuning fork and hold it on a table, the sound becomes relatively loud.
- 48. When an object is forced to vibrate at its natural frequency, its vibration amplitude increases.
- 49. The time for a complete to and fro swing of a pendulum is its frequency.
- 50. The amplitude of a wave is the vertical distance from the midpoint to either the crest or the trough of the wave.
- 51. The distance between successive identical parts of a wave is its displacement.
- 52. The number of times a wave vibrates each second is its period.
- 53. A wave on a rope whose motion is at right angles to the direction of wave propagation is a longitudinal wave.
- _____ 54. Sound waves are examples of longitudinal waves.
- _____ 55. When the high part of one wave fills in the low part of another wave, constructive interference occurs.
- _____ 56. Nodes in a standing wave normally remain stationary.
- _____ 57. Galaxies show a red shift in their spectrums.
- _____ 58. We hear a sonic boom just at the moment a supersonic plane flies directly overhead.

- _____ 59. As a train sounding a horn goes away from you, both the sound speed and the pitch of the horn fall.
- _____ 60. As a light source is coming towards you, you see light of a frequency higher than the source it emits.

Essay

- 61. What is resonance and what conditions cause it? Give examples.
- 62. Write a short paragraph on beats and how they are produced. Give examples.
- 63. What is the difference between a transverse wave and a longitudinal wave? Give examples of each.
- 64. What is a standing wave? A node? An antinode?
- 65. What is the Doppler effect? How does it work? If a star looks bluer to us than it should, is the star moving away from us or toward us? Explain.

Problem

- 66. If you wished to produce a sound with a wavelength in air equal to the length of a 5-m room, what would its frequency be?
- 67. You note a 2.0-second delay for an echo in a canyon. What is the distance to the wall of the canyon?
- 68. Ten violins produce a sound intensity level of 50 dB in a concert hall. How many violins are needed in the hall to produce a level of 60 dB?
- 69. What beat frequency is produced by two tuning forks that vibrate simultaneously with frequencies 300 Hz and 311 Hz?
- 70. A supersonic aircraft produces a shock wave that describes a 30° cone. What happens to the angle of the cone as the aircraft travels faster?

Sound & Waves PT Answer Section

MULTIPLE CHOICE

1.	ANS:	B	PTS:	1	DIF:	L1	OBJ:	26.1 The Origin Of Sound
•	SIA:	Ph.V.I.f	KEY:	sound vibrati	on		BLM:	knowledge
2.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	26.2 Sound In Air
	KEY:	sound pressu	re dist	urbance	BLM:	comprehension	n	
3.	ANS:	A	PTS:	1	DIF:	L2	OBJ:	26.3 Media That Transmit Sound
	KEY:	sound speed			BLM:	comprehension	n	
4.	ANS:	В	PTS:	1	DIF:	L1	OBJ:	26.1 The Origin Of Sound
	STA:	Ph.V.1.f	KEY:	longitudinal v	wave		BLM:	knowledge
5.	ANS:	А	PTS:	1	DIF:	L1	OBJ:	26.4 Speed Of Sound
	KEY:	speed temper	ature		BLM:	knowledge		
6.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	26.8 Resonance
	KEY:	fork resonate	freque	ency	BLM:	application		
7.	ANS:	В	PTS:	1	DIF:	L2	OBJ:	26.4 Speed Of Sound
	KEY:	speed mediur	n sour	nd	BLM:	comprehension	n	
8.	ANS:	E	PTS:	1	DIF:	L2	OBJ:	26.4 Speed Of Sound
	KEY:	time distance			BLM:	application		
9.	ANS:	А	PTS:	1	DIF:	L1	OBJ:	26.8 Resonance
	KEY:	Tacoma resor	nance		BLM:	knowledge		
10.	ANS:	В	PTS:	1	DIF:	L1	OBJ:	26.4 Speed Of Sound
	KEY:	estimate light	ning		BLM:	knowledge		-
11.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	26.5 Loudness
	KEY:	sound decibe	1		BLM:	comprehension	n	
12.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	26.1 The Origin Of Sound
	STA:	Ph.V.1.f	KEY:	beats tuning f	fork		BLM:	application
13.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	26.1 The Origin Of Sound
	STA:	Ph.V.1.f	KEY:	wavelength fr	requenc	cy	BLM:	application
14.	ANS:	В	PTS:	1	DIF:	L2	OBJ:	26.1 The Origin Of Sound
	STA:	Ph.V.1.f	KEY:	tuning fork fr	equenc	y	BLM:	application
15.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	26.4 Speed Of Sound
	KEY:	frequency wa	velengt	th	BLM:	application		*
16.	ANS:	В	PTS:	1	DIF:	L2	OBJ:	26.9 Interference
	KEY:	interference c	construc	ctive interference	ce dest	tructive interfer	rence	
	BLM:	application			·			
17.	ANS:	D	PTS:	1	DIF:	L1	OBJ:	25.1 Vibration Of A Pendulum
	KEY:	time period	BLM:	knowledge				
18.	ANS:	E	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	distance wave	elength		BLM:	knowledge
19.	ANS:	E	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	Hertz unit	BLM:	knowledge		×
20.	ANS:	Е	PTS:	1	DIF:	Ll	OBJ:	25.5 Transverse Waves
	KEY:	transverse wa	ive		BLM:	knowledge		
21.	ANS:	Α	PTS:	1	DIF:	L1	OBJ:	25.6 Longitudinal Waves

	KEY:	sound wave	BLM:	knowledge				
22.	ANS:	E	PTS:	1	DIF:	L2	OBJ:	25.6 Longitudinal Waves
	KEY:	longitudinal	wave		BLM:	comprehensio	n	
23.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	25.9 The Doppler Effect
	KEY:	Doppler pitcl	h		BLM:	comprehensio	n	
24.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	25.9 The Doppler Effect
	KEY:	speed source	sound	l	BLM:	comprehensio	n	
25.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	amplitude dis	stance		BLM:	application
26.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	25.1 Vibration Of A Pendulum
	KEY:	pendulum clo	ock tin	ne	BLM:	application		
27.	ANS:	В	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	period distan	ce		BLM:	knowledge
28.	ANS:	С	PTS:	1	DIF:	L2	OBJ:	25.1 Vibration Of A Pendulum
	KEY:	pendulum tin	ne		BLM:	comprehensio	n	
29.	ANS:	А	PTS:	1	DIF:	L2	OBJ:	25.1 Vibration Of A Pendulum
	KEY:	mass speed	BLM:	analysis				
30.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	25.11 Shock Waves
	KEY:	plane speed	sound		BLM:	comprehensio	n	
31.	ANS:	В	PTS:	1	DIF:	L2	OBJ:	25.11 Shock Waves
	KEY:	observer boo	m spe	ed	BLM:	comprehensio	n	
32.	ANS:	С	PTS:	1	DIF:	L1	OBJ:	25.9 The Doppler Effect
	KEY:	Doppler sour	ce		BLM:	knowledge		
33.	ANS:	A	PTS:	1	DIF:	L2	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	frequency clo	ock		BLM:	application
34.	ANS:	D	PTS:	1	DIF:	L2	OBJ:	25.7 Interference
	KEY:	amplitude int	terferen	ce	BLM:	application		
35.	ANS:	B	PTS:	1	DIF:	L2	OBJ:	25.4 Wave Speed
	STA:	Ph.V.I.d	KEY:	wavelength s	peed		BLM:	application
36.	ANS:	C	PTS:	1	DIF:	L2	OBJ:	25.4 Wave Speed
07	STA:	Ph.V.I.d	KEY:	cycle speed	wavele	ngth	BLM:	application
37.	ANS:	D	PTS:		DIF:	L2	OBJ:	25.4 Wave Speed
20	SIA:	Ph.V.I.d	KEY:	distance velo	city	1.0	BLM:	application
38.	ANS:	D	PTS:		DIF:	L2	OBJ:	25.4 Wave Speed
20	SIA:	Ph.V.I.d	KEY:	crest trough	wavel	ength	BLM:	application
39.	ANS:	B Dh V 1 -	PIS:		DIF:	L2	OBJ:	25.4 Wave Speed
40	SIA:	rn.v.1.a	KEI:	wave radio]	DIE	1.0	DLM:	application
40.	ANS:	A Dh V 1 -	PIS:	l distance law	DIF:	L2	UBJ:	25.4 wave Speed
	SIA:	rn.v.1.a	KEI:	uistance spee	u		BUM:	application

TRUE/FALSE

41.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	26.8 Resonance
	KEY:	resonance	BLM:	knowledge				
42.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	26.3 Media That Transmit Sound
	KEY:	sound vacuur	n		BLM:	knowledge		
43.	ANS:	F	PTS:	1	DIF:	L2	OBJ:	26.2 Sound In Air
	KEY:	sound air	BLM:	comprehension	n			

44.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	26.7 Natural Frequency
	KEY:	frequency nat	tural		BLM:	knowledge		
45.	ANS:	Т	PTS:	1	DIF:	L2	OBJ:	26.8 Resonance
	KEY:	resonance bri	dge		BLM:	comprehension	n	
46.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	26.1 The Origin Of Sound
	STA:	Ph.V.1.f	KEY:	pitch period			BLM:	knowledge
47.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	26.6 Forced Vibration
	KEY:	loud tuning f	ork		BLM:	knowledge		
48.	ANS:	Т	PTS:	1	DIF:	L2	OBJ:	26.7 Natural Frequency
	KEY:	amplitude fre	quency	natural	BLM:	comprehension	n	
49.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	25.1 Vibration Of A Pendulum
	KEY:	pendulum fre	quency		BLM:	knowledge		
50.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	amplitude cre	est		BLM:	knowledge
51.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	distance displ	laceme	nt	BLM:	knowledge
52.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	25.2 Wave Description
	STA:	Ph.V.1.a	KEY:	vibrate period	t		BLM:	knowledge
53.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	25.5 Transverse Waves
	KEY:	longitudinal	wave		BLM:	knowledge		
54.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	25.6 Longitudinal Waves
	KEY:	sound longitu	ıdinal		BLM:	knowledge		
55.	ANS:	F	PTS:	1	DIF:	L1	OBJ:	25.7 Interference
	KEY:	constructive	destruct	tive	BLM:	knowledge		
56.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	25.8 Standing Waves
	KEY:	node standing	2		BLM:	knowledge		
57.	ANS:	Т	PTS:	1	DIF:	L1	OBJ:	25.9 The Doppler Effect
	KEY:	galaxy red sh	ift Do	ppler	BLM:	knowledge		
58.	ANS:	F	PTS:	1	DIF:	L2	OBJ:	25.11 Shock Waves
	KEY:	sonic boom	plane		BLM:	comprehension	n	
59.	ANS:	F	PTS:	1	DIF:	L2	OBJ:	25.9 The Doppler Effect
	KEY:	Doppler spee	d pitcl	n	BLM:	comprehension	n	
60.	ANS:	Т	PTS:	1	DIF:	L2	OBJ:	25.9 The Doppler Effect
	KEY:	light frequent	су		BLM:	comprehension	n	

ESSAY

61. ANS:

Resonance is an unusually large increase in amplitude when a system is driven at its natural frequency by an outside force. A good example of resonance is someone pushing another person on a swing. The pushing person pushes with small pushes in rhythm with the natural swing motion. Soon the swing is very high in the air but with little effort on the part of the pushing person. Another example is the sounding of a tuning fork by the vibrations of another fork of matched frequency. An unfortunate example is the destruction of a bridge when small pushes are applied in rhythm with the natural frequency of the bridge.

PTS: 1 DIF: L2 OBJ: 26.8 Resonance KEY: resonance BLM: comprehension 62. ANS: Beats occur when two waves with almost the same frequency interfere. Beats have a frequency of their own equal to the difference between the two wave frequencies. Sounding two tuning forks slightly out of tune with each other produces beats. Beats are produced by a pair of whining diesel engines running side by side.

PTS:1DIF:L2OBJ:26.1 The Origin Of SoundSTA:Ph.V.1.fKEY:beats | interferenceBLM: comprehension

63. ANS:

In a transverse wave, oscillations are perpendicular to the wave velocity. Oscillations in a longitudinal wave are forward and backward in the direction of the wave's velocity. Waves on a string, waves on the surface of water, and electromagnetic waves are transverse waves; sound waves and waves along the axis of a coil spring are longitudinal waves.

PTS:	1	DIF:	L2	OBJ:	25.5 Transverse Waves 25.6 Longitudinal Wave	S
KEY:	transverse los	ngitudin	nal	BLM:	comprehension	

64. ANS:

A standing wave occurs when a wave is reflected back on itself in such a way that the reflected wave is always out of phase with the incident wave at fixed places called nodes. Nodes are parts of the wave pattern that do not move. At other places, called antinodes, the waves are always in phase with each other. These are places that vibrate at full amplitude.

PTS:	1	DIF:	L1	OBJ:	25.8 Standing Waves
KEY:	standing n	ode antino	ode	BLM:	knowledge

65. ANS:

The Doppler effect is an increase or decrease in frequency due to relative motion of the source of a wave with respect to the receiver. If a wave source approaches a receiver, its frequency increases. If the source is going away from a receiver, its frequency decreases. If a star looks blue to us, the star is coming toward us. The reason for this is that the frequency of light from the star has increased.

PTS:	1	DIF: L2	OBJ:	25.9 The Doppler Effect
KEY:	Doppler star	blue shift	BLM:	analysis

PROBLEM

66.	ANS: 68 Hz				
67.	PTS: KEY: ANS: 340 m	1 DI wavelength frequ	F: L2 uency	OBJ: BLM:	26.4 Speed Of Sound application
68.	PTS: KEY: ANS: 100	1 DI echo distance	F: L2	OBJ: BLM:	26.4 Speed Of Sound application
69.	PTS: KEY: ANS: 11 Hz	1 DI intensity decibel	F: L2	OBJ: BLM:	26.5 Loudness application

70.	PTS: 1 DIF: KEY: frequency beat ANS: the angle decreases			L2	OBJ: 26.5 Loudness BLM: application			
	PTS: KEY:	1 supersonic ar	DIF: ngle	L2	OBJ: BLM:	25.10 Bow Waves application		